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Abstract — This paper describes Instrument Control
Electronics (ICE) for the Space Technology Three
mission. The mission is a dual-spacecraft formation-
flying Michelson interferometer designed to perform the
first long-baseline optical interferometry in space. ST3 is
planned for launch in late 2005, and will demonstrate
enabling technologies in the areas of separated spacecraft
control systems, precise optical pathlength control, and
interspacecraft laser metrology, all of which are critical to
the performance of future planned NASA missions such
as the Terrestrial Planet Finder.

The interferometer flight instrument is based on a
laboratory instrument that been developed over the past
ten years. The flight instrument is planning maximum
use of the developed hardware and software.

There are many challenges in designing flight equivalent
instrument electronics that’s rugged, lower mass, lower
power and reliable.

This paper describes the methods, approaches and
processes that are being used to design instrument
electronics that will meet the project requirements for
cost, mass, power and performance.
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1.  INTRODUCTION

The ST3 Mission involves the use of two spacecraft
flying in formation with each other in an earth-trailing
orbit. Ball Aerospace is designing the two spacecraft and
JPL is designing the two instruments, one on each
spacecraft.

In order to operate properly, the position of each
spacecraft, in relationship to each other as well as the
instrument pointing is critical. Figure 1 shows the

Figure 1, T3 Data Collection Conﬁratzon
Collector spacecraft (far spacecraft) in relation to the
Combiner spacecraft (near spacecraft) as they point toward a
common star.

The spacecraft will utilize flying formation sensors to control
the positions to within centimeters. The instrument uses
sensors and actuators to dynamically control sensor positions
to nanometer resolution.

The subject of this paper is the portion of the instrument that
will dynamically control the sensor position, based on 10
years of experience gained on ground based interferometers.
This has been factored into the performance estimates for the
instrument.

This paper will focus on the process that has been developed
in order to take a lab-based experiment and converting the
experiment to a flyable instrument.



2. INSTRUMENT DESIGN PROCESS

The typical sequence for developing flight equipment is a
breadboard (non-qualification  engineering model)
followed by a Qualification (Qual) Engineering Model
(EM) followed by a flight version.

The function of the breadboard is to demonstrate
compliance with functional requirements and gain
operation experiences. Often the software will be
developed on the breadboard as well. The Qual-EM is
used to qualify the design and the manufacturing process.
The Flight unit incorporates the findings and the lessons
learned during the developmental tests.

In the case of ST3, in order to make maximum use of the
inherence of previous projects, the breadboard is actually
a duplicate of previously developed ground based
interferometers as shown in Figure 2 plus mission specific
enhancements. For the purpose of this paper, we’ll refer
to this as the commercial prototype (CP).

From a flight perspective, the weakness of the process is
the lack of consideration for product assurance
requirements, i.e. electronic parts, reliability and
environmental requirements. In order of priority, each CP
was selected based on: a) functional requirements, b)
availability and c) cost.

The typical flight approach is to redesign the electronics
from ground up. Optimizing the mass, power and volume
in order to meet flight requirements. However, for ST3, a
dramatic change in the architecture would invalidate the
inherited software, change the real-time performance, and
postpone the delivery of breadboard.

After careful consideration, it was decided to retain the
basic VME architecture of the instrument electronics and
to convert each CP to a configuration that could be flight
qualified.

In essence a copy of commercial prototype will stay in
place allowing software development and testing with the
optical bench to continue while individual CP design is
evaluated and upgraded for flight.

Flight conversion priorities are as follows:

1. Meet flight requirements for environment, reliability
and operability.

Operating System Compatible (VxWorks)

Minimum software impact (register level compatible)
Maintain the same system performance

Maintain I/O system compatibility

Reduce system power

Reduce system mass

Reduce system volume
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thufe 2, Commercial Prototype Equipment

Commercial Conversion process

The process depicted in figure 3 was developed to
systemically replace CP to components that could be qualified
to fly. The process starts by:

¢ Generating a list of functional(performance, I/O, mass,
volume and power) and product assurance requirements
based on ST3 mission and system requirements, followed
by

e Use of figure 3 process to evaluate each CP (VME board)
against the ST3 functional and product assurance
requirements.

The process completes its cycle with documenting the tailored
functional, and product assurance requirements in a design
specification.
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Figure 3, Commercial Product Flight Evaluation Process

Commercial Product Evaluation Process

The process depicted in figure 3 is similar to heritage
hardware evaluation. The process ensures that the end
product (after all the necessary upgrades) meets the
performance, interface, mass, power and product
assurance requirements of ST3. The process begins with
obtaining the entire design and development documents
followed by functional, environmental and reliability
evaluations.

The first gate in the process is functional evaluation. The
process focuses on the functions that are required for ST3
mission followed by I/F, mass, power and volume
requirements.

The environmental requirement evaluation focuses on
comparing ST3 environmental requirements with the
available test data. The evaluation will identify areas
requiring design upgrade and additional testing.

The reliability evaluation process focuses on the
adequacy of the design margin, reliability of electronic
parts.

&
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Upgrade
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Figure 4, Comparison between the Typical Sequence and the ST3 Sequence

Sequential Delivery Process

The delivery of the brassboards occurs sequentially, over
the period of many months. Because each brassboard unit
is compatible with the board that it is replacing, major
system level debugging will not be necessary.

Figure 4 compares the typical JPL delivery sequence to
the ST3 ICE Delivery sequence. The typical sequence
prevents any system testing to take place until the mission
specific breadboard is designed and delivered.

The ST3 sequence takes advantage of existing
commercial equipment to allow instrument level
development to occur even before flight requirements is
defined or design staff hired.

The order of the commercial to brassboard development
is determined by the level of maturity of different
portions of the instrument design. A diagram of the
commercial prototype is shown in Figure 6. As you will
note, there are 9 VME boards in the commercial
prototype. As the Flight design progresses, the order of
the board conversion process can be determined.

The flight unit will include functions that are not required
in the commercial prototype. Examples are; Mil-Std-1553

Spacecraft interface and engineering telemetry collection.
These functions will be sequenced to mesh with the delivery
of the converted functions.

At the completion of the brassboard delivery sequence, the
project will have two units at it’s disposal, the original
commercial prototype as well as the newly delivered
brassboard version.

If software development requires development stations, then
the cost for duplicating the commercial units will be much
more preferable to the costs for duplicating the brassboard
version.



Testbed / Flight Configuration Comparison

The similarity between the commercial prototype and the
flight configuration can be seen in Figure 5and Figure 6.

Additional Flight Components

Just as the flight instrument does not need all the features
of the commercial prototype, there are some features
needed by the flight unit, not required by the commercial

prototype.

These new flight features will be able to be added as
necessary into the testbed. It is planned that the new
features can be developed and inserted into the testbed
without invalidating the instrument software or hardware
performance,
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Figure 5, Flight Configuration
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Figure 6, Commercial Prototype Configuration

The following is a summary of flight capabilities that must
be added to support the flight requirements.

L.

The flight configuration utilizes and additional non-
volatile memory board to support flight program boot
from local memory vs. booting from an Ethernet
connection.

The flight configuration also requires the ability to
measure instrument voltage, currents and temperatures.
An engineering measurement board will be added to the
flight configuration to support the flight requirements

The flight configuration also requires the ability to
control power distribution.

The flight configuration needs to control the heaters on
the optical bench.



3.  EARLY RESULTS

The first board to be converted from a commercial
prototype to a brassboard configuration is the Timing
Board. The commercial prototype is shown in Figure 7.
The board was developed by the RICTS project for
ground based interferometers. The board is used as the
timing synchronizer for the instrument. It provides timing
interrupts to the processor and clock signals to the
metrology and starlight subsystems of the instrument.

As per our process, the requirements of the board in the
flight configuration were reviewed. We worked closely
with the original RICTS design engineers to determine
which features that the commercial prototype had, but
were not needed for the ST3 mission. Features not
required were removed or deleted. For example, the
commercial prototype supported eight (8) VME
interrupts. It was determined that the brassboard need to
support only three (3) interrupts. Also, the commercial
prototype supported 32 channels of programmable digital
outputs. The brassboard was reduced to eight (8)
channels.

Also as per our process, the parts on the board were
evaluated for flight applicability. It was determined that
the Altera FPGA should be replaced with Xilinx FPGA

Address selection;

m
Xilinx, RAM
Based FPGA

Figure 8, Timing board, Brassboard Version

Figure 7, T) tmmg' oard, Commercial Prototype

because the Xilinx part is available in a rad tolerant version.
The VME interface chips (VME 2000 and VME 3000)
manufactured by PLX Technology were not available in a
rad tolerant version. The function of the parts were “cloned”
and implemented in the UTMC’s 22V10 rad hard PALs.
The onboard voltage regulators were replaced and the VME
backplane was modified to supply the 3.3 volts necessary for
the FPGA. Switches were replaced with null resistors
(jumpers) and connectors that were not available in flight
configurations were either changed or deleted.

The resulting brassboard is shown in Figure 8. As you will
note, all parts are in flight-like packaging (quad and DIP flat
packs). Parts that are “hay-wired” to sockets are only
socketed for test purposes.

After assembly, the board was thoroughly debugged on a lab
bench using Windows based VME system and TCL scripting
language for board level diagnostics.

The final step was to insert it into the commercial prototype
were it performed as expected.



4. SUMMARY

The ST3 Project has developed a set of procedures to
insure that the flight instrument will make maximum
reuse of the experiences learned for ground based
interferometers.

We expect that by upgrading from ground based designs
the flight instrument development schedule will be
reduced and the performance risk associated with
unproved system design will be reduced.

The upgrading is a methodically performed and can be
summed in the chart shown in Figure 9.

When the tasks are broken down and handled as separate
tasks that can be handled by different people, then the
conversion process can be handled in a parallel fashion
and not necessarily serially.

Start

5

Based on current design maturity,
select board to upgrade

Y

Review capabilities vs. required flight
functions

Y

Cresate and peer review board
functional requirements

Y

Review Parts list for flight applicability

Y

Cresate and peer review board design
specifications

.

Fabricate and test board ageinst the
functional requiremerts and update
necessary SW drivers

Y

Install and verify board into the FIT
system

Is the FIT

upgrade
complete’y

Done

Figure 9, Conversion Process
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5. CONCLUSION

This paper has described the detailed process that ST3
will be using for migrating from commercial level
equipment to a design that can be flight qualified. The
process will not impact ongoing development work as
new elements are added. Large portions of the inherited
interferometer software will not be affected by the
additions.

The risks in terms of unknown performance constraints
will not be an issue because of the incremental delivery
approach.
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